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Relaxation of one-dimensional binary mixtures
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Temporal evolution of one-dimensional binary mixtures of small-diameter elastic particles is studied from
different theoretical and simulational perspectives. The nonlinear Boltzmann equation for the system is solved
exactly in the Fourier space. The simulational algorithm used is extremely fast and produces results that are in
perfect agreement with the theory, even with a fairly small number of particles involved. Both theoretical and
simulational results show that the relaxation time of a non-Maxwellian mixture is a minimum for the mass ratio
of 3+2v2, consistent with earlier investigations, and that for this choice of mass ratio, the distribution functions
reduce to simple closed forms. The evolving distribution oscillates between a bimodal and unimodal form.
[S1063-651%97)00206-7

PACS numbgs): 51.10+y, 02.70.Lq, 05.26-y, 05.20.Dd

[. INTRODUCTION nonzero eigenvalue, which controls the long-time relaxation
of the velocity distribution function, vanishes for the mass
One-dimensional gas systems have been of interest fgatios of unity and infinity. Furthermore, his calculations
quite some time both from mathematical and statistical meshow that this eigenvalue has a maximum value at a mass
chanical points of viewy1-3]. One of the unique properties ratio of 3+2v2~5.8284, corresponding to a minimum relax-
of the one-dimensional system is that elastic collision beation time, in qualitative agreement with the computer simu-
tween particles of equal mass results in a complete exchand@tions of Masoliver and Marro. The exact solution of the
of momentum and energy. Consequently, these particles cafinetic and ergodic properties of a one-dimensional binary
be regarded as being transparent to one another as long $i¢stem, however, is still lacking#].
they are indistinguishable. A one-dimensional gas of equal- This work is based on an entirely different theoretical
mass elastic particles, therefore, conserves its initial velocityreatment of a binary mixture of small-diameter elastic par-
distribution. This is in contrast to the two- or three- ticles, in which the nonlinear Boltzmann'’s transport equation
dimensional case, where partial exchange of energy and més solved exactly in the Fourier space. The problem is further
mentum causes relaxation of the initial distributions into aattacked by a very simple, yet extremely accurate computer
Maxwellian form. simulation technique. The algorithm is not molecular dy-
In a molecular-dynamics simulation, Masoliver andnamical in nature and, hence, does not keep track of the
Marro [4] showed that a one-dimensional binary mixture ofphase-space trajectories of the particles. Consequently, it is
impenetrable(hard cor¢ particles with different masses, very fast. The computer simulation and the theoretical results
when half of the particles are randomly assigned an initiaRre compared with each other, and are found to be in perfect
velocity of +vo and the other halt-v,, evolve toward a agreement. These results are used to resolve some of the
Maxwellian velocity distribution, unlike the corresponding subtle points in the temporal evolution of this type of system
nonergodic system with equal masses. Later, using simildioward equilibrium that have been overlooked by previous
computer simulations, they showed that the relaxation timénvestigators.
for the temporal evolution of a binary mixture of hard rods in
a ring toward the Maxwellian distribution was a function of
the mass ratio of the particles in the mixtyfg. More spe- Il. THEORETICAL ANALYSIS

cifically, they observed that the relaxation time diverges as ~,sider a spatially homogeneous one-dimensional bi-

the mass ratio approaches unity and again Increases, EH?iry mixture of gases, consisting of equal number of mass-
though not so rapidly, as the mass ratio tends to infinity, ity and mass particles. The Boltzmann equation for tem-
Clear.ly, the @vgrgence of the relaxation time at mass rat'oﬁoral evolution of the velocity distributiof(v,t) of the unit

Of. unity and infinity are e_:x_pected. Consequently, the relaxy <o particles due to elastic collisions is given[BYy
ation time must be a minimum somewhere between these

two limits. Marro and Masoliver found this minimum to be

around the mass ratio of 5. af(v,t)

In a theoretical treatment of the dynamics of a one- 0 :f du dv'du'[o(u’,v";u,0)F@ (U v';t)
dimensional two-component gas of “soft” Maxwellian point
particles, Dickmar{6] obtained the eigenvalue spectrum of —a(u,o;u’, v )F@(u,v;t)], (1)

the linearized collision operator. He found that the highest
in which F®(u,v;t) is the pair distribution, and
*Corresponding author. FAX(414) 595-2056. Electronic ad- o(u,v;u’,v') is the probability that a binary collision
dress: pirooz.mohazzabi@uwp.edu changes the velocity of mass 1 and masparticles from
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v,utov’,u’, respectively. Invoking the assumption of mo- 1
lecular chaos and using conservation of energy and momen- @)

tum with
ou,v;uv)=c(u,v;u’,v’)
=8(v+au—v'—au’)s(3v3+zau?
—zv'?—zau’?), (2

we find that for discrete times

Jf(v,b)
o —I—f(v,t):f(v,t—i-l):fdu f(yu+ av,t)
Xg(pv—aut), ()
in which
_1-a B 2 B 2a 4
“ira PPrra e @

Similarly, for velocity distribution of the mass-particles,
g(u,t), we find

g(u,t+1)=f dv f(yu+av,t)g(Bv—au,t). (5

Fourier transforming,

F(k,t)EJ’ ekvf(v,t)dv, (6)

and changing variables to
g=av+yu, w=-—au+pfuv, (7)
we arrive at the equations
F(k,t)=F(ak,t—1)G(— yk,t—1),

G(k,t)=G(ak,t—1)F(Bk,t—1). (8)
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FIG. 1. Temporal evolution of the Fourier transform of normal-
ized velocity distribution of mass-1 particles in a binary mixture
with a mass ratio of 2. Continuous curves are from the theory and
markers are from Monte Carlo simulations. Note the switching be-
havior of the distribution between unimodal and bimodal as time
goes through even and odd values, respectively. All quantities are
dimensionless.

A simple case to analyze both in simulation and in theoryf19uré 1& showsF(x,t) as a function ofx for various

is one in which initially one type of particle is at rest and the
other type has velocitytvy, with no net center-of-mass
motion. Taking these to be maasand mass-1 particles, re-
spectively, we demonstrate in Appendix A that for even

times, namelyt=2j, wherej=1,2,3...,
j
F(x,2))=[] cofdm[a?~2mC(j,m)x] 9
m=0

and
ji—1
G(x,2))=[] coRUm[a~2mD(j,m)x],

m=0

(10

in which x=kv, is a dimensionless quantityC(j,m)
=(By)"=(a/B)D(j,m), and

(i)l
U.m= Gmizi=2mn
2i)!
Q(j,m)= (2) (11

(2m+1)!1(2j—2m—1)!

(even t values. We mention in passing that the derivation for
odd times proceeds in a similar fashion, and the results are
shown in Fig. 1b).

For each particle type, the analytical solution approaches
a Maxwellian form for large timej( values. The approxi-
mation

coi(x)~e (12

becomes increasingly accurate around the maxima of the co-
sine function ag increases. This function becomes a series
of Gaussian peaks centered at the poitsns, and for
largej the peaks are narrow and do not overlap. This causes
the product solutions above to become expressible as a prod-
uct of periodic Gaussian functions with different frequencies,
suppressing one another except nea0, where all share a
maximum. We find that near this maximum

j 2 . 2m
INF(x,2))~ >, {— XE “4j(22rjn) (ﬁ)

2
m=0 a

X2

== [1+(a®=py)?] (13
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and
-1 2,2 : 2m
. B2 . L[ 2 \[By
|nG(x,2J)~mE_O[——2 R P Rt
Bx?

==, [1-(@=py7], (14

where we have used®+ 8y=1. For sufficiently largg, we
obtain

G(x,2))=e (B¢
(15)

F(x,2))=e ML+

where

1-6a+a?

1+2a+a“’ (16)

¢=a’—By=

Note that £ is bounded by=*1, and has roots ah=3
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velocities of the particles in each set are calculated, and the
step is repeated. Collisions between like particles are ne-
glected as these particles are transparent to one another. All
the data are collected over ensembles of 1000 such systems.

Figure 1 compares the computer simulation and the theo-
retical distribution functions in Fourier space at various
times, both even and odd. As can be seen, the agreement
between the simulation results and the theory is perfect, de-
spite the fact that the theoretical results are solely based on
the Boltzmann transport equation and are completely inde-
pendent of the model or algorithm used in the simulations.
Furthermore, these graphs reveal that the shapes of the dis-
tribution functions are quite different at even and odd times,
alternating between essentially unimodal and bimodal forms,
respectively.

Figure 2 shows computer simulation results for the tem-
poral evolution of the distribution functiof{v,t), for a mass
ratio of 2, after eight, nine, and ten time steps. It is interest-
ing that the molecular dynamics results of Masoliver and
Marro [4], which is based on an algorithm originally devel-

+2v2, which are reciprocals of each other. Inverse Fourieroped by Adler and Wainwrighf8], shows that the initial

transforming, we find that the long-time velocity distribu- gistripution function degenerates into two Gaussians cen-
tions are Maxwellian with time-dependent variances givengreq symmetrically on the two sides of the origin that finally

by

and

(17

in which t is arbitrarily even or odd; the computations for
=2j+1 are straightforward and give the same result.

Since for any even distribution functiorf(x), and its
Fourier transformF(k), we have

2

d
o?=()=~ gz F(Wli-o, (18

our results fora?(t) obtained by smalk expansion are, in
fact, the exact variances for all times.

[ll. COMPUTER SIMULATIONS

evolve into a single Gaussian centered at the origin. Both our
simulation and our theoretical results, however, show that
this is not the case. In fact, the distribution function oscillates
between a one Gaussian-like and a two separate Gaussian-
like functions at odd and even times, respectively, all of
which merge into a single Gaussian in perfect agreement
with our theoretical results, as the system evolves toward
equilibrium. This is further evidenced in Fig. 1, where the
Fourier transform of the distribution functida(k,t) shows
completely different functional behavior for even and odd
times. The evolution of the distribution function of mass-
particles also shows this switching behavior but in reverse
order. One may suspect that this discrepancy is caused by the
difference in the initial conditions used in our simulations
and those by the aforementioned investigators. Nevertheless,
when we simulated the system with the symmetric initial
conditions used by Masoliver and Marro, nametyl for

both types of particles, we still obtained the switching behav-
ior between the unimodal and bimodal Gaussian-like distri-
bution functions. We believe that this discrepancy is caused
by the fact that the details of the evolution of the distribution
function were obscured in Masoliver and Marro’'s simula-

Our computer simulation model consists of 100 mass-1ions as they used time steps that corresponded to only even
and mass particles each, on a straight line. Half of the number of collisions per particle of each type.

former are randomly assigned an initial velocity-eb,, and
the other half an initial velocity of-v,. Massa particles

In order to simulate the relaxation time of the standard
deviations of the distribution functions, we first note that

are all initially at rest. All velocities are measured in units of Sincet is either an even or an odd integer, and thaan be
vo. We do not keep track of the position of the particles. We€ither positive or negative, therefore, the quangftys either
perform an ensemble Monte Carlo simulation in which par-Positive or negative. We define a relaxation timby

ticles of different mass undergo a large number of collisions.
During one time stegunit of time) each particle of mass 1
randomly chooses a partner from the collection of neass-
particles and elastically collides with it. No particle under- 9"
goes more than one collision per time step. This task is ac-
complished by shuffling the ordered set of masparticles, = i

and then allowing particle numbern = 1,2,3,..) from the In|€|’

set of mass-1 particles to collide with particle numbdrom

the set of mass particles. After each time step, the new Therefore, the standard deviations reduce to

exp(—t/)=¢"

(19
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FIG. 3. Standard deviation of velocity distribution of mass-1

particles as a function of time in a binary mixture with a mass ratio
of 2. Solid markers are computer simulation data. Continuous
curves are from a least-squares fit of the relaxation time the
data at even time@ipper branch The same relaxation timén this
case 7=3.9829 also generates curves that perfectly match both
branches of data for the maagparticles(not shown. All quantities

are dimensionless.
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the upper sign chosen, whereas for an odd number of colli-
014 sions the lower sign should be used since $6t2, £ is
negative. However, when we fitted the relaxation tintgy a
7 2 Y 0 1 2 3 nonlinear least-square method to the even-time data for the
v mass-1 particles, it generated curves according to 5.
that perfectly matched the odd-time branch of the data for
these particles as well as both branches of data for the mass-
(c) t=10 a particles. For all values od that we examined, Eq$20)
were in perfect agreement with the simulation results.
Figure 4 shows the dependence of relaxation time of the
standard deviations of the distribution functions on the mass
ratio. The simulational data are obtained by the method de-
scribed above, whereas the theoretical results are from Egs.
(16) and (19). Again, the two are in perfect agreement. It
may seem that including data in the regiar.1 is redun-
dant. However, we have included this region as we are using
nonsymmetrical initial conditions for the two types of par-
ticles. As can be seen from this figure, the computer simula-
a M M o J N 3 tion data in the vicinity ol=3+2v2 become scattered and,
in fact, impossible to obtain as this mass ratio is approached.
This is due to the fact that the relaxation time for the stan-
dard deviations, but not the distributions themselves, be-
comes so small in this region that even after one collision the
standard deviation has essentially completely relaxed. Con-
sequently, in the vicinity of this mass ratio, collection of data
with any reliability becomes literally impossible. The same
12 difficulty is encountered near the other roat3—2v2. It
; (20 is, however, interesting to note that for these values of the
mass ratio, the distribution functions in Fourier space can be
where the upper or the lower signs should be used véthen  reduced to a simple closed form for all discrete values of
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FIG. 2. Normalized velocity distribution of mass-1 patrticles in a
binary mixture with a mass ratio of 2 at three different times. The
unimodal-bimodal switching behavior described in Fig. 1 is again
evident here. All quantities are dimensionless.
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positive or negative, respectively. t>0, as we have shown in Appendix B.
Figure 3 shows computer simulation results for standard
deviation of the mass-1 particles as a function of time with IV. CONCLUDING REMARKS

a=2. Note that according to Eq&0) two branches of data

should be generated for each type of particles. For example, Perfect agreement between theory and computer simula-
for mass-1 particles and after an even number of collisiongiion results in all cases and the coherency between them is
the standard deviation is given by the first of E(0) with indicative of the correctness and self-consistency in both ap-
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10

f(0,00=3[8(v—vo)+8(v+vo)], g(v,00=5(v),
(

for which
F(k,0)=cogkvy), G(k,0=1, (A2)

it is clear that solutions will be products of cosines. From the
double iterates

Relaxation Time, t

F(x,2))=F(a®x,2j —2)G%(ayx,2j —2)F(Byx,2j — 2)
(A3)

and

G(x,2))=G(a?x,2] —2)F?(ayx,2j —2)G(Byx,2] — 2),
(A4)

Mass Ratio, a

FIG. 4. Relaxation timgdimensionlessof the standard devia-
tions of the velocity distributions in a binary mixture as a function
of the mass ratio. Circles are the computer simulation data and th@
continuous curve is from the theory.

and assuming product solutions of the for(8 and (10),
nd thatC(j,m) is independent ofy, we obtain

j

IT cofl-m[q2i=2mc(j, m)x]
proaches and techniques. The simulation algorithm, not be- ™m=0
ing molecular dynamical in nature and, therefore, not keep- _ i—1mF 2j-2m—2 2~/i _
ing track of the trajectories of the individual particles in the =cos’ o @ C(j = 1.m)x]
phase space, is extremely fast, accurate, and efficient. Only i-2
100 particles of each type have produced results that are in X [ cogRU~tm[42i=2m=24 1D (j—1,m)x]
perfect agreement with the theory, which is algorithm inde- m=0
pendent. i

The molecular dynamic curve of Marro and MasoliV&f X [ cofl=tm[q2i-2m=25,C(j—1,m)x].
for the relaxation time of the velocity distributions of the m=0
particles toward equilibrium is very broad and only suggests (A5)
that the minimum of the relaxation time occurs roughly
somewhere around the mass ratio of 5, as they have indiMatching the exponents of the terms of frequendy and
cated. Furthermore, theoretical treatment of a system of oner2i~2 on both sides, we find that
dimensional two-component gas of “soft(Maxwellian
point particles by Dickmaii6] shows that the highest non- P(j,00=1
zero eigenvalue of the linearized collision operator indicates
a minimum relaxation time at a mass ratio ofr3/2  an
~5.8284. . .

It is true that the relaxation time for the standard devia- CU-1.9=4yC(-1.0, (AG)
tions is not necessarily the relaxation time of the distributions. o which we establish that
function toward a Gaussian, as there are infinitely many dis-
tribution functions with the same standard deviation as that C(j,m=(By)™. (A7)
of a Gaussian. In fact, Eq$16) and (19) show that fora
=3+42v2~5.8284 anda=3—-2v2~0.1716, the relaxation Furthermore,
time of the standard deviation is zero. This means that for 8 8
these choices of the mass ratio, the initial standard deviation 2j—2~(i _ i PY ;
of the distribution function is conserved. The relaxation of a e -1, =a” a2 ¢ ] 2 PU~1.0. (A®)
the actual distribution function of each type of particle to-
ward a Gaussian, however, is finite and proceeds in a fashio#nd so,
similar to that depicted in Fig. 2. Nevertheless, since for all
values ofa different from the roots, 32v2, the distribution D(j—1,0= E D(j,m)=
function as well as its standard deviation relaxes into a Max- o
wellian, therefore, by a limiting argument we can conclude

that the relaxation time of the actual distribution function is,By matching the exponents of the terms of frequency
: X 2j—2p p i
in fact, a minimum at these roots. a (B7y)P on both sides of EqA5), as well as the analo-

gous equation for th& distribution, we obtain

RI™

(By)™ (A9)

APPENDIX A P(j,p)=P(j—1,p)+2Q(j—1,p—1)+P(j —1,|0—(1) )
Al10
Taking the initial distributions for mass-1 and maspar-
ticles to be and
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Q(j,P)=Q(j—=1p)+2P(j—1p—1)+Q(j—1p—-1),
(A11)

which can be iterated from their initial valuesjat 0, to the
forms given by Eqs(11).

APPENDIX B
For the special case @f=3=*2v2 and the initial condi-
tions given by Eqs(Al), the exact solutions df(x,t),

F(x,2))= H 0042”‘)[&2‘ "(By)™],  (BY)

simplify dramatically since for these values af we have
Bvy=a?=1, and the transformed distribution reduces to

F(x,2j)=nf[0 coéjfi‘)H%)j_m(%)mx
_ n mg;ﬂ,)( d

X 22j-1
coa( Ef) } . (B2)

X

— m 0( 2m/ P
COS 2]

For odd times, we have
F(x,2j+1)=F(ax,2j)G(yx,2)), (B3)

and sincea=1A2 and By/a=1N2, we find

22
CO{ ﬁ) 1 . (B4)

Therefore, for generit>0 (even or odd, we have

Ll corled]

(B5)
Therefore, for the mass rati@s=3+2v2, corresponding to
a minimum relaxation time, the distribution functions in Fou-
rier space reduce to simple closed forms.

F(x,2j+1)=

F(x,t)=
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