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Relaxation of one-dimensional binary mixtures
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Temporal evolution of one-dimensional binary mixtures of small-diameter elastic particles is studied from
different theoretical and simulational perspectives. The nonlinear Boltzmann equation for the system is solved
exactly in the Fourier space. The simulational algorithm used is extremely fast and produces results that are in
perfect agreement with the theory, even with a fairly small number of particles involved. Both theoretical and
simulational results show that the relaxation time of a non-Maxwellian mixture is a minimum for the mass ratio
of 312&, consistent with earlier investigations, and that for this choice of mass ratio, the distribution functions
reduce to simple closed forms. The evolving distribution oscillates between a bimodal and unimodal form.
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I. INTRODUCTION

One-dimensional gas systems have been of interest
quite some time both from mathematical and statistical m
chanical points of view@1–3#. One of the unique propertie
of the one-dimensional system is that elastic collision
tween particles of equal mass results in a complete excha
of momentum and energy. Consequently, these particles
be regarded as being transparent to one another as lon
they are indistinguishable. A one-dimensional gas of equ
mass elastic particles, therefore, conserves its initial velo
distribution. This is in contrast to the two- or thre
dimensional case, where partial exchange of energy and
mentum causes relaxation of the initial distributions into
Maxwellian form.

In a molecular-dynamics simulation, Masoliver an
Marro @4# showed that a one-dimensional binary mixture
impenetrable~hard core! particles with different masses
when half of the particles are randomly assigned an ini
velocity of 1v0 and the other half2v0 , evolve toward a
Maxwellian velocity distribution, unlike the correspondin
nonergodic system with equal masses. Later, using sim
computer simulations, they showed that the relaxation t
for the temporal evolution of a binary mixture of hard rods
a ring toward the Maxwellian distribution was a function
the mass ratio of the particles in the mixture@5#. More spe-
cifically, they observed that the relaxation time diverges
the mass ratio approaches unity and again increases
though not so rapidly, as the mass ratio tends to infin
Clearly, the divergence of the relaxation time at mass ra
of unity and infinity are expected. Consequently, the rel
ation time must be a minimum somewhere between th
two limits. Marro and Masoliver found this minimum to b
around the mass ratio of 5.

In a theoretical treatment of the dynamics of a on
dimensional two-component gas of ‘‘soft’’ Maxwellian poin
particles, Dickman@6# obtained the eigenvalue spectrum
the linearized collision operator. He found that the high
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nonzero eigenvalue, which controls the long-time relaxat
of the velocity distribution function, vanishes for the ma
ratios of unity and infinity. Furthermore, his calculation
show that this eigenvalue has a maximum value at a m
ratio of 312&'5.8284, corresponding to a minimum rela
ation time, in qualitative agreement with the computer sim
lations of Masoliver and Marro. The exact solution of th
kinetic and ergodic properties of a one-dimensional bin
system, however, is still lacking@4#.

This work is based on an entirely different theoretic
treatment of a binary mixture of small-diameter elastic p
ticles, in which the nonlinear Boltzmann’s transport equat
is solved exactly in the Fourier space. The problem is furt
attacked by a very simple, yet extremely accurate comp
simulation technique. The algorithm is not molecular d
namical in nature and, hence, does not keep track of
phase-space trajectories of the particles. Consequently,
very fast. The computer simulation and the theoretical res
are compared with each other, and are found to be in per
agreement. These results are used to resolve some o
subtle points in the temporal evolution of this type of syste
toward equilibrium that have been overlooked by previo
investigators.

II. THEORETICAL ANALYSIS

Consider a spatially homogeneous one-dimensional
nary mixture of gases, consisting of equal number of ma
unity and mass-a particles. The Boltzmann equation for tem
poral evolution of the velocity distributionf (v,t) of the unit
mass particles due to elastic collisions is given by@7#

] f ~v,t !
]t

5E du dv8du8@s~u8,v8;u,v !F ~2!~u8,v8;t !

2s~u,v;u8,v8!F ~2!~u,v;t !#, ~1!

in which F (2)(u,v;t) is the pair distribution, and
s(u,v;u8,v8) is the probability that a binary collision
changes the velocity of mass 1 and mass-a particles from
6881 © 1997 The American Physical Society
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v,u to v8,u8, respectively. Invoking the assumption of m
lecular chaos and using conservation of energy and mom
tum with

s~u8,v8;u,v !5s~u,v;u8,v8!

5d~v1au2v82au8!d~ 1
2v

21 1
2au

2

2 1
2v822 1

2au8
2!, ~2!

we find that for discrete times

] f ~v,t !
]t

1 f ~v,t !5 f ~v,t11!5E du f~gu1av,t !

3g~bv2au,t !, ~3!

in which

a[
12a

11a
, b[

2

11a
, g[

2a

11a
. ~4!

Similarly, for velocity distribution of the mass-a particles,
g(u,t), we find

g~u,t11!5E dv f ~gu1av,t !g~bv2au,t !. ~5!

Fourier transforming,

F~k,t ![E eikv f ~v,t !dv, ~6!

and changing variables to

q[av1gu, w[2au1bv, ~7!

we arrive at the equations

F~k,t !5F~ak,t21!G~2gk,t21!,

G~k,t !5G~ak,t21!F~bk,t21!. ~8!

A simple case to analyze both in simulation and in the
is one in which initially one type of particle is at rest and t
other type has velocity6v0 , with no net center-of-mas
motion. Taking these to be mass-a and mass-1 particles, re
spectively, we demonstrate in Appendix A that for ev
times, namely,t52 j , where j51,2,3,...,

F~x,2j !5 )
m50

j

cosP~ j ,m!@a2 j22mC~ j ,m!x# ~9!

and

G~x,2j !5 )
m50

j21

cosQ~ j ,m!@a2 j22mD~ j ,m!x#, ~10!

in which x[kv0 is a dimensionless quantity,C( j ,m)
5(bg)m5(a/b)D( j ,m), and

P~ j ,m!5
~2 j !!

~2m!! ~2 j22m!!
,

Q~ j ,m!5
~2 j !!

~2m11!! ~2 j22m21!!
. ~11!
n-

yFigure 1~a! showsF(x,t) as a function ofx for various
~even! t values. We mention in passing that the derivation
odd times proceeds in a similar fashion, and the results
shown in Fig. 1~b!.

For each particle type, the analytical solution approac
a Maxwellian form for large time (j ) values. The approxi-
mation

cos2 j~x!'e2x2 j ~12!

becomes increasingly accurate around the maxima of the
sine function asj increases. This function becomes a ser
of Gaussian peaks centered at the pointsx5np, and for
large j the peaks are narrow and do not overlap. This cau
the product solutions above to become expressible as a p
uct of periodic Gaussian functions with different frequenci
suppressing one another except nearx50, where all share a
maximum. We find that near this maximum

lnF~x,2j !' (
m50

j F2
x2

2
a4 j S 2 j2mD S bg

a2 D 2mG
52

x2

4
@11~a22bg!2 j # ~13!

FIG. 1. Temporal evolution of the Fourier transform of norma
ized velocity distribution of mass-1 particles in a binary mixtu
with a mass ratio of 2. Continuous curves are from the theory
markers are from Monte Carlo simulations. Note the switching
havior of the distribution between unimodal and bimodal as ti
goes through even and odd values, respectively. All quantities
dimensionless.
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and

lnG~x,2j !' (
m50

j21 F2
b2x2

2
a4 j22S 2 j

2m11D S bg

a2 D 2mG
52

bx2

4g
@12~a22bg!2 j #, ~14!

where we have useda21bg51. For sufficiently largej , we
obtain

F~x,2j !5e2~x2/4!~11j2 j !, G~x,2j !5e2~bx2/4g!~12j2 j !,
~15!

where

j[a22bg5
126a1a2

112a1a2
. ~16!

Note that j is bounded by61, and has roots ata53
62&, which are reciprocals of each other. Inverse Fou
transforming, we find that the long-time velocity distrib
tions are Maxwellian with time-dependent variances giv
by

s1
25

11j t

2

and

sa
25

12j t

2a
, ~17!

in which t is arbitrarily even or odd; the computations fort
52 j11 are straightforward and give the same result.

Since for any even distribution function,f (x), and its
Fourier transform,F(k), we have

s25^x2&52
d2

dk2
F~k!uk50 , ~18!

our results fors2(t) obtained by small-x expansion are, in
fact, the exact variances for all times.

III. COMPUTER SIMULATIONS

Our computer simulation model consists of 100 mas
and mass-a particles each, on a straight line. Half of th
former are randomly assigned an initial velocity of1v0 , and
the other half an initial velocity of2v0 . Mass-a particles
are all initially at rest. All velocities are measured in units
v0 . We do not keep track of the position of the particles. W
perform an ensemble Monte Carlo simulation in which p
ticles of different mass undergo a large number of collisio
During one time step~unit of time! each particle of mass 1
randomly chooses a partner from the collection of masa
particles and elastically collides with it. No particle unde
goes more than one collision per time step. This task is
complished by shuffling the ordered set of mass-a particles,
and then allowing particle numbern ~n 5 1,2,3,...! from the
set of mass-1 particles to collide with particle numbern from
the set of mass-a particles. After each time step, the ne
r

n

1

f

-
.

c-

velocities of the particles in each set are calculated, and
step is repeated. Collisions between like particles are
glected as these particles are transparent to one anothe
the data are collected over ensembles of 1000 such syst

Figure 1 compares the computer simulation and the th
retical distribution functions in Fourier space at vario
times, both even and odd. As can be seen, the agreem
between the simulation results and the theory is perfect,
spite the fact that the theoretical results are solely based
the Boltzmann transport equation and are completely in
pendent of the model or algorithm used in the simulatio
Furthermore, these graphs reveal that the shapes of the
tribution functions are quite different at even and odd tim
alternating between essentially unimodal and bimodal for
respectively.

Figure 2 shows computer simulation results for the te
poral evolution of the distribution functionf (v,t), for a mass
ratio of 2, after eight, nine, and ten time steps. It is intere
ing that the molecular dynamics results of Masoliver a
Marro @4#, which is based on an algorithm originally deve
oped by Adler and Wainwright@8#, shows that the initial
distribution function degenerates into two Gaussians c
tered symmetrically on the two sides of the origin that fina
evolve into a single Gaussian centered at the origin. Both
simulation and our theoretical results, however, show t
this is not the case. In fact, the distribution function oscilla
between a one Gaussian-like and a two separate Gaus
like functions at odd and even times, respectively, all
which merge into a single Gaussian in perfect agreem
with our theoretical results, as the system evolves tow
equilibrium. This is further evidenced in Fig. 1, where th
Fourier transform of the distribution functionF(k,t) shows
completely different functional behavior for even and o
times. The evolution of the distribution function of massa
particles also shows this switching behavior but in reve
order. One may suspect that this discrepancy is caused b
difference in the initial conditions used in our simulatio
and those by the aforementioned investigators. Neverthe
when we simulated the system with the symmetric init
conditions used by Masoliver and Marro, namely,61 for
both types of particles, we still obtained the switching beh
ior between the unimodal and bimodal Gaussian-like dis
bution functions. We believe that this discrepancy is cau
by the fact that the details of the evolution of the distributi
function were obscured in Masoliver and Marro’s simu
tions as they used time steps that corresponded to only e
number of collisions per particle of each type.

In order to simulate the relaxation time of the standa
deviations of the distribution functions, we first note th
sincet is either an even or an odd integer, and thatj can be
either positive or negative, therefore, the quantityj t is either
positive or negative. We define a relaxation timet by

exp~2t/t![uju t

or

t[2
1

lnuju
. ~19!

Therefore, the standard deviations reduce to
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s15S 16e2t/t

2 D 1/2, sa5S17e2t/t

2a D1/2, ~20!

where the upper or the lower signs should be used whenj t is
positive or negative, respectively.

Figure 3 shows computer simulation results for stand
deviation of the mass-1 particles as a function of time w
a52. Note that according to Eqs.~20! two branches of data
should be generated for each type of particles. For exam
for mass-1 particles and after an even number of collisio
the standard deviation is given by the first of Eqs.~20! with

FIG. 2. Normalized velocity distribution of mass-1 particles in
binary mixture with a mass ratio of 2 at three different times. T
unimodal-bimodal switching behavior described in Fig. 1 is ag
evident here. All quantities are dimensionless.
d

le,
s,

the upper sign chosen, whereas for an odd number of c
sions the lower sign should be used since fora52, j is
negative. However, when we fitted the relaxation timet by a
nonlinear least-square method to the even-time data for
mass-1 particles, it generated curves according to Eqs.~20!
that perfectly matched the odd-time branch of the data
these particles as well as both branches of data for the m
a particles. For all values ofa that we examined, Eqs.~20!
were in perfect agreement with the simulation results.

Figure 4 shows the dependence of relaxation time of
standard deviations of the distribution functions on the m
ratio. The simulational data are obtained by the method
scribed above, whereas the theoretical results are from
~16! and ~19!. Again, the two are in perfect agreement.
may seem that including data in the regiona,1 is redun-
dant. However, we have included this region as we are us
nonsymmetrical initial conditions for the two types of pa
ticles. As can be seen from this figure, the computer simu
tion data in the vicinity ofa5312& become scattered and
in fact, impossible to obtain as this mass ratio is approach
This is due to the fact that the relaxation time for the sta
dard deviations, but not the distributions themselves,
comes so small in this region that even after one collision
standard deviation has essentially completely relaxed. C
sequently, in the vicinity of this mass ratio, collection of da
with any reliability becomes literally impossible. The sam
difficulty is encountered near the other root,a5322&. It
is, however, interesting to note that for these values of
mass ratio, the distribution functions in Fourier space can
reduced to a simple closed form for all discrete values
t.0, as we have shown in Appendix B.

IV. CONCLUDING REMARKS

Perfect agreement between theory and computer sim
tion results in all cases and the coherency between the
indicative of the correctness and self-consistency in both

n

FIG. 3. Standard deviation of velocity distribution of mass
particles as a function of time in a binary mixture with a mass ra
of 2. Solid markers are computer simulation data. Continu
curves are from a least-squares fit of the relaxation timet to the
data at even times~upper branch!. The same relaxation time~in this
caset53.9824! also generates curves that perfectly match b
branches of data for the mass-a particles~not shown!. All quantities
are dimensionless.
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55 6885RELAXATION OF ONE-DIMENSIONAL BINARY MIXTURES
proaches and techniques. The simulation algorithm, not
ing molecular dynamical in nature and, therefore, not ke
ing track of the trajectories of the individual particles in t
phase space, is extremely fast, accurate, and efficient. O
100 particles of each type have produced results that ar
perfect agreement with the theory, which is algorithm ind
pendent.

The molecular dynamic curve of Marro and Masoliver@5#
for the relaxation time of the velocity distributions of th
particles toward equilibrium is very broad and only sugge
that the minimum of the relaxation time occurs rough
somewhere around the mass ratio of 5, as they have i
cated. Furthermore, theoretical treatment of a system of o
dimensional two-component gas of ‘‘soft’’~Maxwellian!
point particles by Dickman@6# shows that the highest non
zero eigenvalue of the linearized collision operator indica
a minimum relaxation time at a mass ratio of 312&
'5.8284.

It is true that the relaxation time for the standard dev
tions is not necessarily the relaxation time of the distribut
function toward a Gaussian, as there are infinitely many
tribution functions with the same standard deviation as t
of a Gaussian. In fact, Eqs.~16! and ~19! show that fora
5312&'5.8284 anda5322&'0.1716, the relaxation
time of the standard deviation is zero. This means that
these choices of the mass ratio, the initial standard devia
of the distribution function is conserved. The relaxation
the actual distribution function of each type of particle t
ward a Gaussian, however, is finite and proceeds in a fas
similar to that depicted in Fig. 2. Nevertheless, since for
values ofa different from the roots, 362&, the distribution
function as well as its standard deviation relaxes into a M
wellian, therefore, by a limiting argument we can conclu
that the relaxation time of the actual distribution function
in fact, a minimum at these roots.

APPENDIX A

Taking the initial distributions for mass-1 and mass-a par-
ticles to be

FIG. 4. Relaxation time~dimensionless! of the standard devia
tions of the velocity distributions in a binary mixture as a functi
of the mass ratio. Circles are the computer simulation data and
continuous curve is from the theory.
e-
-

ly
in
-

s

i-
e-

s

-
n
s-
t

r
n
f

on
ll

-

,

f ~v,0!5 1
2 @d~v2v0!1d~v1v0!#, g~v,0!5d~v !,

~A1!

for which

F~k,0!5cos~kv0!, G~k,0!51, ~A2!

it is clear that solutions will be products of cosines. From t
double iterates

F~x,2j !5F~a2x,2j22!G2~agx,2j22!F~bgx,2j22!
~A3!

and

G~x,2j !5G~a2x,2j22!F2~agx,2j22!G~bgx,2j22!,
~A4!

and assuming product solutions of the forms~9! and ~10!,
and thatC( j ,m) is independent ofa, we obtain

)
m50

j

cosP~ j ,m!@a2 j22mC~ j ,m!x#

5cosP~ j21,m!@a2 j22m22a2C~ j21,m!x#

3 )
m50

j22

cos2Q~ j21,m!@a2 j22m22agD~ j21,m!x#

3 )
m50

j2 l

cosP~ j21,m!@a2 j22m22bgC~ j21,m!x#.

~A5!

Matching the exponents of the terms of frequencya2 j and
a2 j22 on both sides, we find that

P~ j ,0!51

and

C~ j21,1!5bgC~ j21,0!, ~A6!

from which we establish that

C~ j ,m!5~bg!m . ~A7!

Furthermore,

a2 j22C~ j21,1!5a2 j
bg

a2 5a2 j
b

a
D~ j21,0!, ~A8!

and so,

D~ j21,0!5
b

a
, D~ j ,m!5

b

a
~bg!m. ~A9!

By matching the exponents of the terms of frequen
a2 j22p(bg)p on both sides of Eq.~A5!, as well as the analo
gous equation for theG distribution, we obtain

P~ j ,p!5P~ j21,p!12Q~ j21,p21!1P~ j21,p21!
~A10!

and

he



u-
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Q~ j ,p!5Q~ j21,p!12P~ j21,p21!1Q~ j21,p21!,
~A11!

which can be iterated from their initial values atj50, to the
forms given by Eqs.~11!.

APPENDIX B

For the special case ofa5362& and the initial condi-
tions given by Eqs.~A1!, the exact solutions ofF(x,t),

F~x,2j !5 )
m50

j

cos
S 2 j2mD

@a2 j22m~bg!mx#, ~B1!

simplify dramatically since for these values ofa, we have
bg5a25 1

2, and the transformed distribution reduces to

F~x,2j !5 )
m50

j

cos
S 2 j2mD F S 12D

j2mS 12D
m

xG
5 )

m50

j

cos
S 2 j2mD S x2 j D

5cos
(m50
j S 2 j2mD x

2 j
5FcosS x2 j D G

22 j21

. ~B2!
For odd times, we have

F~x,2j11!5F~ax,2j !G~gx,2j !, ~B3!

and sincea51/& andbg/a51/&, we find

F~x,2j11!5FcosS x

A22 j11D G 2
2 j

. ~B4!

Therefore, for generict.0 ~even or odd!, we have

F~x,t !5FcosS x

A2tD G
2t21

, G~x,t !5FcosS x

aA2tD G
2t21

.

~B5!

Therefore, for the mass ratiosa5362&, corresponding to
a minimum relaxation time, the distribution functions in Fo
rier space reduce to simple closed forms.
n
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